Abstract

We report a study by electron paramagnetic resonance of amorphous silicon dioxide $(a{\text{-SiO}}_{2})$ irradiated by 2.5 MeV electrons in the dose range from $1.2\ifmmode\times\else\texttimes\fi{}{10}^{3}$ to $5\ifmmode\times\else\texttimes\fi{}{10}^{6}\text{ }\text{kGy}$. By measuring the change in the splitting of the primary $^{29}\text{S}\text{i}$ hyperfine doublet of the ${E}_{\ensuremath{\gamma}}^{\ensuremath{'}}$ centers we evidenced an irradiation induced local (around the defects) densification of $a{\text{-SiO}}_{2}$. Our data show that the local degree of densification of the materials is significantly higher than that obtained by mean density measurements, suggesting that the structural modifications induced by electron irradiation take place prevalently within confined defective regions of the material. The overall results we have found have permitted us to obtain a detailed quantitative description of the electron irradiation-induced densification process of $a{\text{-SiO}}_{2}$ and to point out relevant physical properties which have for many years remained elusive. Among them, we have found strong evidences that the processes of permanent densification induced by irradiation or by high hydrostatic pressure involve quite similar structural modification of the $a{\text{-SiO}}_{2}$ matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.