Abstract

Depurination is accelerated by heat and reactive oxygen species under physiological conditions. We previously reported that polyamines are involved in mitigation of heat shock and oxidative stresses through stimulation of the synthesis of heat shock and antioxidant proteins. This time, we investigated whether polyamines are directly involved in protecting nucleic acids from thermal depurination induced by high temperature. The suppressing efficiencies of depurination of DNA by spermine, caldopentamine and caldohexamine in the presence of 1 mM Mg2+, were approximately 50%, 60% and 80%, respectively. Mg2+ also protected nucleic acids against depurination but to a lesser degree than polyamines. Longer unusual polyamines were more effective at protecting DNA against depurination compared to standard polyamines. The tRNA depurination suppressing efficiencies of spermine, caldopentamine and caldohexamine in the presence of 1 mM Mg2+, were approximately 60%, 70% and 80%, respectively. Standard polyamines protected tRNA and ribosomes more effectively than DNA against thermal depurination. Branched polyamines such as mitsubishine and tetrakis(3-aminopropyl)ammonium also protected RNA more effectively than DNA against depurination. These results suggest that the suppressing effect of depurination of nucleic acids (DNA and RNA) depends on the types of polyamines: i.e. to maintain functional conformation of nucleic acids at high temperature, longer and branched polyamines play important roles in protecting nucleic acids from depurination compared to standard polyamines and Mg2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.