Abstract
Changes in the regulation, formation, and gating of connexin-based gap junction channels occur in various disorders. It has been shown that H and Ca are involved in the regulation of gap junctional communication. Ischemia-induced intracellular acidification and Ca overload lead to closure of gap junctions and inhibit an exchange by ions and small molecules throughout the network of cells in the heart, brain, and other tissues. In this study, we examined the role of the polyamines in the regulation of connexin 43 (Cx43)-based gap junction channels under elevated intracellular concentrations of hydrogen ([H]i) and calcium ([Ca]i) ions. Experiments, conducted in Novikoff and A172 human glioblastoma cells, which endogenously express Cx43, showed that polyamines prevent downregulation of Cx43-mediated gap junctional communication caused by elevated [Ca]i and [H]i, accompanying ischemic and other pathological conditions. siRNA knockdown of Cx43 significantly reduces gap junctional communication, indicating that Cx43 gap junctions are the targets for spermine regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.