Abstract

Our previous results indicate that during protoplast isolation an oxidative burst occurs [A.K. Papadakis and KA Roubelakis-Angelakis (1999) Plant Physiol 127:197-205] and that suppression of totipotency is correlated with reduced antioxidant activity and low redox state [A.K. Papadakis et al. (2001b) Plant Physiol 126:434-444]. Polyamines are known to affect cell development and to act as antioxidants. Polyamines applied during isolation of tobacco (Nicotiana tabacum L.) protoplasts reduced the accumulation of O2*- but not that of H2O2. This antioxidant effect is probably due to the inhibition of microsomal membrane NADPH oxidase, which occurred in a concentration-dependent manner, with spermine exerting the highest inhibitory effect. However, during protoplast culture, polyamine oxidase activity increased severalfold in spermidine- and spermine-treated protoplasts, concomitant with H2O2 titers. A cell death program was executed in untreated protoplasts, as documented by membrane malfunction, induced DNase activity, DNA fragmentation and a positive TUNEL reaction. Protoplast cell death was prevented in protoplasts treated with putrescine, but not by treatment with spermidine or spermine, which rather had the opposite effect. The data presented suggest that PAs may be implicated in the expression of plant protoplast totipotency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.