Abstract

BackgroundArabidopsis has 5 paralogs of the S-adenosylmethionine decarboxylase (SAMDC) gene. Neither their specific role in development nor the role of positive/purifying selection in genetic divergence of this gene family is known. While some data are available on organ-specific expression of AtSAMDC1, AtSAMDC2, AtSAMDC3 and AtSAMDC4, not much is known about their promoters including AtSAMDC5, which is believed to be non-functional.Results(1) Phylogenetic analysis of the five AtSAMDC genes shows similar divergence pattern for promoters and coding sequences (CDSs), whereas, genetic divergence of 5’UTRs and 3’UTRs was independent of the promoters and CDSs; (2) while AtSAMDC1 and AtSAMDC4 promoters exhibit high activity (constitutive in the former), promoter activities of AtSAMDC2, AtSAMDC3 and AtSAMDC5 are moderate to low in seedlings (depending upon translational or transcriptional fusions), and are localized mainly in the vascular tissues and reproductive organs in mature plants; (3) based on promoter activity, it appears that AtSAMDC5 is both transcriptionally and translationally active, but based on it’s coding sequence it seems to produce a non-functional protein; (4) though 5’-UTR based regulation of AtSAMDC expression through upstream open reading frames (uORFs) in the 5’UTR is well known, no such uORFs are present in AtSAMDC4 and AtSAMDC5; (5) the promoter regions of all five AtSAMDC genes contain common stress-responsive elements and hormone-responsive elements; (6) at the organ level, the activity of AtSAMDC enzyme does not correlate with the expression of specific AtSAMDC genes or with the contents of spermidine and spermine.ConclusionsDifferential roles of positive/purifying selection were observed in genetic divergence of the AtSAMDC gene family. All tissues express one or more AtSAMDC gene with significant redundancy, and concurrently, there is cell/tissue-specificity of gene expression, particularly in mature organs. This study provides valuable information about AtSAMDC promoters, which could be useful in future manipulation of crop plants for nutritive purposes, stress tolerance or bioenergy needs. The AtSAMDC1 core promoter might serve the need of a strong constitutive promoter, and its high expression in the gametophytic cells could be exploited, where strong male/female gametophyte-specific expression is desired; e.g. in transgenic modification of crop varieties.

Highlights

  • Arabidopsis has 5 paralogs of the S-adenosylmethionine decarboxylase (SAMDC) gene

  • Phylogenetic analysis Phylogenetic analysis of the coding sequences of five AtSAMDCs showed that AtSAMDC1 and AtSAMDC2 are grouped close to each other on one node with highest (>98%) boot strap values (Fig. 2A), and AtSAMDC3 and AtSAMDC4 are grouped closer on another node with AtSAMDC5 almost close to both groups

  • The 5’untranslated region (UTR) on the other hand showed a different pattern compared to coding sequence (CDS) and promoters; whereas AtSAMDC1 and AtSAMDC2 are found to be closer on one node of the tree and 5’un-translated regions (5’UTRs) of AtSAMDC4 and AtSAMDC5 are present on one branch, the 5’UTR of AtSAMDC3 showed divergence from both of these two pairs (Fig. 2C)

Read more

Summary

Introduction

Arabidopsis has 5 paralogs of the S-adenosylmethionine decarboxylase (SAMDC) gene. Neither their specific role in development nor the role of positive/purifying selection in genetic divergence of this gene family is known. While some data are available on organ-specific expression of AtSAMDC1, AtSAMDC2, AtSAMDC3 and AtSAMDC4, not much is known about their promoters including AtSAMDC5, which is believed to be non-functional. Sadenosylmethionine decarboxylase (SAMDC, a.k.a. AdoMetDC - EC 4.1.1.50), a key enzyme for the biosynthesis of higher polyamines (PAs), is encoded by a multigene family in most angiosperms [1,2,3,4,5]. Even less is known about the genetic divergence of the promoter sequences of the five AtSAMDC gene family members in relation to their upstream promoter elements, and the 5’UTRs of the transcript. Developmental and tissue specific expression of the five AtSAMDCs and their role in the regulation of Spd/Spm biosynthesis in Arabidopsis by their corresponding promoters is not well understood

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.