Abstract
The hypersensitive response (HR) is a powerful resistance system that plants have developed against pathogen attack. There are two major pathways for HR induction; one is through recognition of the pathogen by a specific host protein, and is known as the host HR. The other is through common biochemical changes upon infection--the nonhost HR. We previously demonstrated that hydrogen peroxide derived from polyamine degradation by polyamine oxidase triggers the typical host HR in tobacco plants upon infection with tobacco mosaic virus. However, it remains to be determined whether or not polyamines are involved in the nonhost HR in tobacco, and in the host HR in other plant species. When tobacco plants were infected with Pseudomonas cichorii, a representative nonhost pathogen, transcripts for six genes encoding enzymes for polyamine metabolism were simultaneously induced, and polyamines were accumulated in apoplasts. Hydrogen peroxide was concomitantly produced and hypersensitive cell death occurred at infected sites. Silencing of polyamine oxidase by the virus-induced gene silencing method resulted in suppression of hydrogen peroxide production and in disappearance of visible hypersensitive cell death with an increase in bacterial growth. Our results indicated that polyamines served as the source of hydrogen peroxide during the nonhost HR in tobacco plants. Further analysis revealed that polyamines were accumulated in apoplasts of Arabidopsis thaliana infected with Pseudomonas syringae, and of rice infected with Magnaporthe grisea, both causing the typical host HR. As in tobacco, it is conceivable that the same mechanism operates for nonhost HR in these plants. Our present observations thus suggested that polyamines are commonly utilized as the source of hydrogen peroxide during host- and nonhost HRs in higher plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.