Abstract

The major objective of this study was to determine if the observed changes in polyamines and their biosynthetic enzymes during somatic embryo development were specifically related to either the stage of the embryo development or to the duration of time spent on the maturation medium. Somatic embryos of red spruce (Picea rubens) at different developmental stages, grown in the embryo development and maturation media for various lengths of time, were separated from the associated subtending tissue (embryogenic and the suspensor cell masses) and analyzed for their polyamine content as well as for polyamine biosynthetic enzyme activities. Polyamine content was also analyzed in embryos representing different stages of development that were collected from the same culture plate at the same time and the subtending tissue surrounding them. Putrescine was the predominant polyamine in the pro-embryogenic tissue, while spermidine was predominant during embryo development. Significant changes in spermidine/putrescine and spermine/putrescine ratios were observed at all stages of embryo development as compared to the pro-embryogenic cell mass. Changes in the ratios of various polyamines were clearly correlated with the developmental stage of the embryo rather than the period of growth in the maturation medium. Whereas the activities of both ornithine decarboxylase and arginine decarboxylase increased by week 3 or 4 and stayed high during the subsequent 6 wk of growth, the activity of S-adenosylmethionine decarboxylase steadily declined during embryo development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call