Abstract

Polyamines (PAs) regulate growth in plants and modulate the whole plant life cycle. They have been associated with different abiotic and biotic stresses, but little is known about the molecular regulation involved. We quantified gene expression of PA anabolic and catabolic pathway enzymes in tomato (Solanum lycopersicum cv. Ailsa Craig) leaves under heat versus cold stress. These include arginase 1 and 2, arginine decarboxylase 1 and 2, agmatine iminohydrolase/deiminase 1, N-carbamoyl putrescine amidase, two ornithine decarboxylases, three S-adenosylmethionine decarboxylases, two spermidine synthases; spermine synthase; flavin-dependent polyamine oxidases (SlPAO4-like and SlPAO2) and copper dependent amine oxidases (SlCuAO and SlCuAO-like). The spatiotemporal transcript abundances using qRT-PCR revealed presence of their transcripts in all tissues examined, with higher transcript levels observed for SAMDC1, SAMDC2 and ADC2 in most tissues. Cellular levels of free and conjugated forms of putrescine and spermidine were found to decline during heat stress while they increased in response to cold stress, revealing their differential responses. Transcript levels of ARG2, SPDS2, and PAO4-like increased in response to both heat and cold stresses. However, transcript levels of ARG1/2, AIH1, CPA, SPDS1 and CuAO4 increased in response to heat while those of ARG2, ADC1,2, ODC1, SAMDC1,2,3, PAO2 and CuPAO4-like increased in response to cold stress, respectively. Transcripts of ADC1,2, ODC1,2, and SPMS declined in response to heat stress while ODC2 transcripts declined under cold stress. These results show differential expression of PA metabolism genes under heat and cold stresses with more impairment clearly seen under heat stress. We interpret these results to indicate a more pronounced role of PAs in cold stress acclimation compared to that under heat stress in tomato leaves.

Highlights

  • Crop losses due to different abiotic stressors are impediments to sustainable food production.Extreme temperatures, drought, and salinity are some of the known serious stressors [1,2,3,4,5,6,7,8]

  • Transcripts of ADC1,2, ODC1,2, and spermine synthase (SPMS) declined in response to heat stress while ODC2 transcripts declined under cold stress

  • Possible players responsive to different abiotic stressors include, for instance, transcription factors (b-ZIP, ERF/AP2 family, DOF, HD-ZIP, MYB, NAC, WRKY, and Zn-finger) and other genes (CDPKs, HAP/CAAT, Heat shock protein (HSP)-LEA family, MAPKKK) [9,10,11,12,13,14], plant hormones

Read more

Summary

Introduction

Extreme temperatures (cold, freezing or heat), drought, and salinity are some of the known serious stressors [1,2,3,4,5,6,7,8]. Each of these stressors impose specific complexity in biological and genetic response of a plant and to finding solutions to mitigate them. Heat/cold acclimation and tolerance impact an array of biochemical, molecular and metabolic processes in a sequential manner [20,21,22,23]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call