Abstract
Exogenously supplied auxin (1-naphthaleneacetic acid) inhibited light-induced activity increase of polyamine oxidase (PAO), a hydrogen peroxide-producing enzyme, in the outer tissues of maize (Zea mays) mesocotyl. The same phenomenon operates at PAO protein and mRNA accumulation levels. The wall-bound to extractable PAO activity ratio was unaffected by auxin treatment, either in the dark or after light exposure. Ethylene treatment did not affect PAO activity, thus excluding an effect of auxin via increased ethylene biosynthesis. The auxin polar transport inhibitors N(1)-naphthylphthalamic acid or 2,3,5-triiodobenzoic acid caused a further increase of PAO expression in outer tissues after light treatment. The small increase of PAO expression, normally occurring in the mesocotyl epidermis during plant development in the dark, was also inhibited by auxin, although to a lesser extent with respect to light-exposed tissue, and was stimulated by N(1)-naphthylphthalamic acid or 2,3,5-triiodobenzoic acid, thus suggesting a complex regulation of PAO expression. Immunogold ultrastructural analysis in epidermal cells revealed the association of PAO with the secretory pathway and the cell walls. The presence of the enzyme in the cell walls of this tissue greatly increased in response to light treatment. Consistent with auxin effects on light-induced PAO expression, the hormone treatment inhibited the increase in immunogold staining both intraprotoplasmically and in the cell wall. These results suggest that both light and auxin finely tune PAO expression during the light-induced differentiation of the cell wall in the maize mesocotyl epidermal tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.