Abstract
Beneficial rhizobacteria in the soil are important drivers of plant health and growth. In this study, we provide the draft genome of a root colonizing and auxin-producing Pseudomonas sp. strain GBPI_506. The bacterium was investigated for its contribution in the growth of Nicotiana benthamiana (Nb) and biosynthesis of nicotine. The bacterium showed chemotaxis towards root exudates potentially mediated by putrescine, a polyamine compound, to colonize the roots of Nb. Application of the bacterium with the roots of Nb, increased plant biomass and total soluble sugars in the leaves, and promoted lateral root (LR) development as compared to the un-inoculated plants. Confocal analysis using transgenic (DR5:GFP) Arabidopsis showed increased auxin trafficking in the LR of inoculated plants. Upregulation of nicotine biosynthesis genes and genes involved in salicylic acid (SA) and jasmonic acid (JA) signaling in the roots of inoculated plants suggested increased nicotine biosynthesis as a result of bacterial application. An increased JA content in roots and nicotine accumulation in leaves provided evidence on JA-mediated upregulation of nicotine biosynthesis in the bacterized plants. The findings suggested that the bacterial root colonization triggered networking between auxin, SA, and JA to facilitate LR development leading to enhanced plant growth and nicotine biosynthesis in Nb.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.