Abstract
The proliferation of the rat intestinal mucosal IEC-6 cell line requires polyamines, whose synthesis is catalyzed by the enzyme ornithine decarboxylase (ODC). ODC inhibition leads to polyamine depletion, as well as inhibition of both cell proliferation and apoptosis by regulating gene expression. The NF-kappa B transcription factor regulates genes involved in apoptotic, immune, and inflammatory responses. In the present study we tested the hypothesis that NF-kappa B is activated following ODC inhibition. We found that the inhibition of ODC by alpha-difluoromethylornithine (DFMO) resulted in a approximately 50% decrease in intracellular putrescine levels within 1 h. NF-kappa B is activated by DFMO through the degradation of the inhibitory protein I kappa B alpha that sequesters NF-kappa B in the cytoplasm. The DFMO-induced NF-kappa B complexes contain the p65 and p50 members of the Rel protein family. DFMO-induced NF-kappa B activation was accompanied by the translocation of p65 from the cytoplasm into the nucleus. DFMO selectively inhibited a gene reporter construct dependent on the kappa B site present in the HLA-B7 gene. In contrast, DFMO had no effect on a gene reporter construct dependent on the kappa B site present in the interleukin-8 gene. Thus, we report that ODC inhibition activates the NF-kappa B transcription factor, which may mediate the altered physiological state of intestinal cells that occurs following polyamine depletion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.