Abstract

The synthesis of N-hexylpentanamide from a stoichiometric amount of pentanenitrile and hexylamine has been studied as a model reaction for the synthesis of nylon-6 from 6-aminocapronitrile. The reaction was carried out under mild hydrothermal conditions and in the presence of a homogeneous ruthenium catalyst. For the mild hydrothermal conditions the presence of hexylamine distinctively increases the nitrile hydrolysis compared to the nitrile hydrolysis in the absence of hexylamine. Amine-catalyzed nitrile hydrolysis mainly produces the N-substituted amide. A clear product development is observed, consisting of first the terminal amide formation and second the accumulation of N-hexylpentanamide. With a maximum conversion of only 80 % after 18 h, the nitrile hydrolysis rate at 230 degrees C is still much too low for nylon-6 synthesis. Ruthenium dihydride phosphine was therefore used as a homogeneous catalyst, which significantly increases the nitrile hydrolysis rate. At a temperature of 140 degrees C and with only 0.5 mol % [RuH(2)(PPh(3))(4)] a 60 % nitrile conversion is already reached within 2 h. Initially the terminal amide is the sole product, which is gradually converted into N-hexylpentanamide. The reaction has a high initial rate, however, for higher conversions a strong decrease in hydrolysis rate is observed. This is ascribed to product inhibition, which results from the equilibrium nature of the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.