Abstract
ABSTRACTThin film composites (TFCs) as forward osmosis (FO) membranes for seawater desalination application were prepared. For this purpose, polyacrylonitrile (PAN) as a moderately hydrophilic polymer was used to fabricate support membranes via nonsolvent‐induced phase inversion. A selective thin polyamide (PA) film was then formed on the top of PAN membranes via interfacial polymerization reaction of m‐phenylenediamine and trimesoyl chloride (TMC). The effects of PAN solution concentration, solvent mixture, and coagulation bath temperature on the morphology, water permeability, and FO performance of the membranes and composites were studied. Support membranes based on low PAN concentrations (7 wt %), NMP as solvent and low coagulation bath temperature (0 °C) demonstrated lower thickness, thinner skin layer, more porosity, and higher water permeability. Meanwhile, decreasing the PAN solution concentration lead to higher water permeance and flux and lower reverse salt flux, structural parameter, and tortuosity for the final TFCs. Composites made in N,N‐dimethylformamide presented lower permeance and flux for water and salt and higher salt rejection, structural parameter, and tortuosity. FO assay of the composites showed lower water permeance values in saline medium comparing to pure water. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44130.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.