Abstract

Synthesis of DNA and poly(adenosine diphosphoribose) [poly(ADPR)] was examined in permeabilized xeroderma pigmentosum lymphoblasts (XP3BE) before and after UV irradiation and in the presence and absence of Micrococcus luteus UV endonuclease. M. luteus UV endonuclease had no effect on the level of DNA or poly(ADPR) synthesis in control, unirradiated cells. UV irradiation caused a decrease in replicative DNA synthesis without any significant change in poly(ADPR) synthesis. In UV-irradiated cells treated with M. luteus UV endonuclease, DNA synthesis was restored to a level slightly greater than in the unirradiated control cells, and poly(ADPR) synthesis increased by 2- to 4-fold. Time--course studies showed that the UV endonuclease dependent poly(ADPR) synthesis preceded the endonuclease-dependent DNA synthesis. Inhibition of endonuclease-dependent poly(ADPR) synthesis with 3-aminobenzamide, 5-methylnicotinamide, or theophylline produced a partial inhibition of the endonuclease-dependent DNA synthesis. Conversely, inhibition of the endonuclease-dependent DNA synthesis with dideoxythymidine triphosphate, phosphonoacetic acid, or aphidicolin had no effect on the endonuclease-dependent poly(ADPR) synthesis. These studies show that stimulation of poly(ADPR) synthesis in UV-irradiated cells occurs subsequent to the DNA strand breaks created by the specific action of the UV endonuclease on UV-irradiated DNA. The effect of the inhibitors of poly(ADPR) synthesis in UV-irradiated cells indicates that the endonuclease-stimulated DNA synthesis is dependent in part on the prior synthesis of poly(ADPR).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call