Abstract

Ultraviolet (UV) radiation is extremely dangerous to humans and can contribute to immunosuppression, erythema, early ageing and skin cancer. UV protection finishing may greatly influence the handling and permeability of fabrics, while UV-proof fibres can guarantee close contact between UV-resistant agents and fabric without affecting the handling of the fabric. In this study, polyacrylonitrile (PAN)/UV absorber 329 (UV329)/titanium dioxide (TiO2) composite nanofibrous membranes with complex, highly efficient UV resistance were fabricated via electrospinning. UV329 was included in the composite to further strengthen the UV resistance properties via absorption function, while TiO2 inorganic nanoparticles were added to provide UV shielding function. The presence of UV329 and TiO2 in the membranes was confirmed using Fourier-transform infrared spectroscopy, which also showed the absence of chemical bonds between PAN and the anti-UV agents. The PAN/UV329/TiO2 membranes exhibited a UV protection factor of 1352 and a UVA transmittance of 0.6%, which indicate their extraordinary UV resistance properties. Additionally, filtration performance was investigated in order to expand the application field of the UV-resistant PAN/UV329/TiO2 membranes, and the composite nanofibrous membranes showed a UV filtration efficiency of 99.57% and a pressure drop of 145 Pa. The proposed multi-functional nanofibrous membranes have broad application prospects in outdoor protective clothing and window air filters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call