Abstract

BackgroundCo-production of polyhydroxyalkanoate (PHA) and amino acids makes bacteria effective microbial cell factories by secreting amino acids outside while accumulating PHA granules inside. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the PHAs with biocompatibility and fine mechanical properties, but its production is limited by the low level of intracellular propionyl-CoA.Resultsl-Isoleucine producing Corynebacterium glutamicum strain WM001 were analyzed by genome and transcriptome sequencing. The results showed that the most over-expressed genes in WM001 are relevant not only to l-isoleucine production but also to propionyl-CoA accumulation. Compared to the wild-type C. glutamicum ATCC13869, the transcriptional levels of the genes prpC2, prpD2, and prpB2, which are key genes relevant to propionyl-CoA accumulation, increased 26.7, 25.8, and 28.4-folds in WM001, respectively; and the intracellular level of propionyl-CoA increased 16.9-fold in WM001. When the gene cluster phaCAB for PHA biosynthesis was introduced into WM001, the recombinant strain WM001/pDXW-8-phaCAB produced 15.0 g/L PHBV with high percentage of 3-hydroxyvalerate as well as 29.8 g/L l-isoleucine after fed-batch fermentation. The maximum 3-hydroxyvalerate fraction in PHBV produced by WM001/pDXW-8-phaCAB using glucose as the sole carbon source could reach 72.5%, which is the highest reported so far.ConclusionsGenome and transcriptome analysis showed that C. glutamicum WM001 has potential to accumulate l-isoleucine and propionyl-CoA pool. This was experimentally confirmed by introducing the phaCAB gene cluster into WM001. The recombinant strain WM001/pDXW-8-phaCAB produced high levels of PHBV with high 3-hydroxyvalerate fraction as well as l-isoleucine. Because of its high level of intracellular propionyl-CoA pool, WM001 might be used for producing other propionyl-CoA derivatives.

Highlights

  • Co-production of polyhydroxyalkanoate (PHA) and amino acids makes bacteria effective microbial cell factories by secreting amino acids outside while accumulating PHA granules inside

  • Genome sequencing and transcriptome analysis of C. glutamicum WM001 Corynebacterium glutamicum has been remarkable platform bacteria for producing l-isoleucine [32]. l-Isoleucine-producing C. glutamicum strain WM001 was originally isolated from soil, and is closely related to C. glutamicum strain ATCC13869, based on their 16S rDNA sequences

  • The GC content of C. glutamicum WM001 is similar to the GC content of C. glutamicum ATCC13032 (53.8%), ATCC14067(54.1%), and ATCC13869 (54.2%) [37]

Read more

Summary

Introduction

Co-production of polyhydroxyalkanoate (PHA) and amino acids makes bacteria effective microbial cell factories by secreting amino acids outside while accumulating PHA granules inside. Poly(3-hydroxybutyrate-co3-hydroxyvalerate) (PHBV) is one of the PHAs with biocompatibility and fine mechanical properties, but its production is limited by the low level of intracellular propionyl-CoA. Industrial producers of l-isoleucine were mostly Corynebacterium glutamicum [2]. Several l-isoleucine producers have been obtained by random mutation, site-directed mutagenesis, and rational metabolic engineering [1, 3,4,5,6,7,8,9,10]. Polyhydroxyalkanoates (PHAs) are natural biodegradable and biocompatible polyesters with piezoelectricity and flexible mechanical properties and are potential alternatives for petroleum-based plastics [11]. PHAs accumulated in various microorganisms and plants for storing carbon and energy under nutrient imbalance [12] and could be naturally degraded within 100 h in the soil [11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call