Abstract
We have immobilized the mineralizing agent alkaline phosphatase (AlkP) in a hydrophilic polymer: poly(2-hydroxy ethyl methacrylate) - (pHEMA) - in a copolymerization technique. Histochemical study on polymer sections revealed that AlkP has retained its enzymic activity. The image analysis of sections using a tessellation method showed a lognormal distribution of the area of the tiles surrounding AlkP particles, thus confirming a homogeneous distribution of the enzyme in the polymer. Pellets of pHEMA-AlkP were incubated with a synthetic body fluid containing organic phosphates (β-glycerophosphate). Mineral deposits with a rounded shape (calcospherites) were obtained in about 17 days. We have investigated the effects of three bisphosphonic pharmacological compounds (etidronate, alendronate and tiludronate) on this system which mimics the mineralization process of cartilage and woven bone. Bisphosphonates at a concentration of 10-2 M totally inhibited AlkP in solution at a concentration of 10-4 mg/ml. Inhibition has been reported being due to the chelation of a metal cofactor (Zn2+). Etidronate and alendronate appeared to similarly inhibit the calcospherite deposition onto the pHEMA-AlkP material. Both bisphosphonates possess three sites for the mineral complexion by Ca chemisorbtion. On the other hand, tiludronate having only two sites, was associated with a reduced inhibitory effect on mineralization but larger crystals were obtained. The pHEMA-AlkP material contains an immobilized enzyme in a hydrogel and mimics the physiological conditions of matrix vesicles entrapped within the cartilage(or bone) matrix. It provides an interesting method to study the effects of pharmacological compounds on the mineralization process in bone and cartilage in a non cellular and protein-free model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.