Abstract

AbstractPoly(vinyl chloride), metallic oxides (from copper, molybdenum, and zinc), and organically modified montmorillonite (O‐MMT) nanocomposites were prepared in a melt‐blending or intercalation‐in‐the‐molten‐state process. The morphology of the nanocomposites was evaluated with X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Properties, such as the mechanical, thermal, and electrical properties, and the dynamic thermal stability against dehydrochlorination were also evaluated. Nanocomposites with a hybrid intercalated/exfoliated structure were obtained in all of the situations considered, as demonstrated by the XRD and TEM results and indirectly by the increment of Young's modulus of the formulations with increasing amount of O‐MMT incorporated. The modeling of Young's modulus by the Halpin–Tsai, Hui–Shia, and Lewis–Nielsen theories showed that the process of nanocomposite preparation allowed the aspect ratio of the clay particles to increase; these values were comparable to those nanocomposites obtained by other researchers with different polymeric matrices and methodologies. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.