Abstract

Poly(vinyl chloride) (PVC) ultrafiltration membranes with improved antifouling and antibiofouling properties were prepared by non-solvent induced phase inversion using a hyperbranched polyamidoamine as additive. PVC reacted into the casting solution with the commercial polyamidoamine nanomaterial Helux-3316 by means of a nucleophilic substitution reaction. The composition of neat and functionalized membranes was studied by ATR-FTIR and elemental composition. Amino groups were tracked using the fluorescent dye fluorescamine. Surface ζ-potential and water contact angles were used to measure surface charge and hydrophilicity of tested membranes. The incorporation of amino groups increased membrane hydrophilicity and surface porosity, which resulted in enhanced permeability. Functionalized membranes displayed antifouling behaviour revealed upon filtering BSA solutions and lower irreversible fouling than PVC membranes. The attachment of Helux moieties to PVC yielded membranes with antibiofouling functionality explained by the interaction of positively charged Helux moieties with the negatively charged cell envelopes. Growth reduction for cells attached to the membrane surface during filtration reached up to 1-log for the Gram-positive bacterium S. aureus. This investigation revealed that the incorporation of the hyperbranched nanomaterial in concentrations in the order of 1 wt% in the casting solution provides significant benefits to membrane performance, in terms of permeability and antifouling potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.