Abstract

Mixed matrix membranes (MMMs) of poly(vinyl alcohol) (PVA) containing certain amounts of ZSM-5 zeolite were evaluated for pervaporation dehydration of highly concentrated isopropanol aqueous solution. The effects of zeolite content, feed composition and feed temperature on the membrane separation performance are in detail examined by using a preliminarily one-factor-each time method and a systematically response surface methodology (RSM). Preliminarily results show the dehydration separation factor/selectivity have been greatly boosted but without the cost of pervaporation flux/permeance after adding zeolite ZSM-5, and it is consistent very well with the Arrhenius activation energy estimations where water molecules require much less energy whereas ethanol molecules need much more energy to transport through the membrane, probably because of the favorable hydrophilic and porous features of zeolite ZSM-5 as revealed by swelling and water contact angle results. High feed isopropanol concentration and low feed temperature are both observed to lead to very low pervaporation flux/permeance but very relatively high separation factor/selectivity. The RSM results suggest that zeolite content, feed composition and feed temperature all have highly significant impacts on total pervaporation flux and separation factor. The interaction effect of zeolite content and feed temperature on separation factor is for the first time found to be also significant. The polynomial models established according to the RSM analysis can fit very well against the experimental data with a very high coefficient of determination and the predictions given for optimized conditions have been experimentally confirmed by the validation results with a deviation of less than 2.0%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call