Abstract

AbstractLow temperature growth of poly-SiGe has been investigated by reactive thermal chemical vapor deposition technique, which is a newly developed technique for preparing polycrystalline materials with using redox reactions in a set of source materials, Si2H6 and GeF4.. In order to prepare high uniformity and reproducibility of Si-rich poly-SiGe, total pressure, gas flow ratio, and residence time are optimized at 450°C of substrate temperature. Through optimizing the conditions, poly-Si1−xGex (x<0.04) films have been prepared in the reproducibility more than 90% and uniformity more than 88%. Bottom gate type of n-channel thin film transistors has been fabricated in various grain size of poly-Si1−xGex on SiO2 (100nm)/Si substrates. 5-36 cm2/Vs of field effect mobility of thin film transistors (L/W = 50μm/50μm) have been achieved after hydrogenation, whose threshold voltage is around 2±0.5V, and on/off ratio is more than 104.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.