Abstract

AbstractPoly(phenylene sulfide)/low‐melting‐point metal composites (PPSMs) with various loading levels were prepared by melt compounding. The nonisothermal crystallization behavior and transient viscoelastic properties were characterized by the DSC, POM, DMA, and parallel‐plate rheometer. The results reveal that the low‐melting‐point metal (LMPM) particles show nice dispersion at relative low content levels (< 30 wt %). The PPSMs composites present dual characteristics of both the filled polymer composite and polymer blend system in their transient viscoelastic behaviors, which results in occurrence of the stress overshoots with long relaxation time and nonzero residual stress especially at high shear levels. During the crystallization process, the presence of those deformable LMPM droplets facilitates the crystallization kinetics of PPS because of their flow‐promoting action. On the other hand, the LMPM has no heterogeneous nucleating effect and, only plays the role of inert filler, which results in the degradation of the crystal structure of PPS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 677–690, 2008

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call