Abstract
Solar interfacial evaporation is an emerging technology in solar energy harvesting developed to remedy the global energy crisis and the lack of freshwater resources. However, developing fully enhanced thermal management to optimize solar-heat utilization efficiency and form remains a great challenge. We created a synergistic photothermal layer from a poly(N-phenylglycine) (PNPG)/MoS2 nanohybrid via electrostatic-induced self-assembly for a broad-spectrum and efficient solar absorption. The PNPG/MoS2 system provided effective synergistic photothermal conversion and good water transmission, enabling rapid solar steam escape. Notably, synergistic coupling of solar evaporation-thermoelectric (TE) power generation was also achieved, providing more efficient exploitation of solar heat. The system demonstrated a solar evaporation rate of up to 1.70 kg m-2 h-1 and achieved a maximum thermoelectric output power with 0.23 W m-2 under one sun. The high-performance PNPG/MoS2 synergistic photothermal system developed in this study offers potential opportunities for coupling solar water purification with thermoelectric power generation to meet the needs of resource-scarce areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.