Abstract
A series of poly(N-isopropylacrylamide)-grafted gelatins (PNIPAM gelatins) of three different graft densities (approx. 11, 22 and 34 graft chains per gelatin molecule) and three different molecular weights of their graft chains (molecular weight approximately 1.2 × 104, 5.0 × 104 and 1.3 × 105 g/mol) were prepared by multiple derivatization of dithiocarbamyl (DC) group in a gelatin molecule and subsequent iniferter (acts as an initiator, transfer-agent and terminator)-based photopolymerization of NIPAM. The weight ratio of PNIPAM graft chains to gelatin (P/G) varied from 1.4 to 49. Aqueous solutions of PNIPAM-gelatins showed thermo-responsiveness, depended on the graft density and the molecular weight of PNIPAM graft chain or P/G. Aqueous solutions (10 or 20%, w/v) of PNIPAM-gelatins with P/G of more than 5.8 were converted to gels at 37°C. Focal plane images of PNIPAM-gelatin gels by confocal laser scanning microscopy revealed that the size of hydrophobically clustered aggregates increased with P/G, whereas the space of microvoids decreased with concentration. Compressive strain–stress measurements revealed that compressive strength of PNIPAM-gelatin increased with P/G. Bovine smooth muscle cells (SMCs)-entrapped gels were produced from PNIPAM-gelatin-containing cell-suspended medium solutions at 37°C. The entrapped cells proliferated in the gel with P/G of more than 12. A higher cell proliferativity was obtained at low concentration (5%, w/v) and higher P/G (> 18). Tissue formation composed of proliferative SMCs and cell-secreted extracellular matrices (collagen) was obtained at 14 days incubation. The inter-relationship between the molecular parameters of PNIPAM-gelatin, internal structural features and cell proliferation potential was discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.