Abstract

We designed a temperature-responsive and biodegradable novel drug-delivery carrier. A block copolymer, poly (N-isopropylacrylamide-dl-lactide) (PNIPAAm–PLA), was synthesized by the ring-opening polymerization of dl-lactide, and used as a carrier for a drug-delivery system. In this study, temperature-responsive nanoparticles (NPs) encapsulating betamethasone disodium 21-phosphate (BP) were prepared from a blend of PLA homopolymer and block copolymers by an oil-in-water solvent-diffusion method in the presence of zinc ion (PLA/PNIPAAm–PLA (NPs)). The resulting NP size was around 140nm. The drug release from temperature-responsive NP could be controllable by changing the temperature. Moreover, a murine macrophage-like cell line, RAW 264.7 cells, was used to measure and image the cell uptake of fluorescent PLA/PNIPAAm–PLA NPs at 30°C and 37°C on the boundary of LCST (34°C). Below the LCST, cellular uptake was not observed, but contrary to cellular uptake it was clearly observed above the LCST. Moreover, we found this effect to be useful for controlling the stealthiness by changing the temperature. Present temperature-responsive NPs have successfully exhibited thermo-responsive drug release and intracellular uptake while possessing a biodegradable character.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.