Abstract

One of the key components in inverted organic solar cells is a zinc oxide (ZnO) layer as an electron-extraction layer. However, this layer contains electron traps that decrease the electron-extraction efficiency and reduce the photovoltaic performance. In this work, we report the photovoltaic property improvement of inverted PTB7-Th:PC71BM solar cells by coating high-molecular-weight poly(N-isopropylacrylamide-co-methacrylic acid) (H-PNIPAM) on top of the ZnO layer. The H-PNIPAM film thicknesses were carefully controlled by spin-coating different concentrations of H-PNIPAM solutions to generate an optimal thickness (3–5 nm). Atomic force microscopy and X-ray photoelectron spectroscopy revealed a uniformly coated H-PNIPAM layer. The photoluminescence spectra showed that the layer reduced the number of ZnO trap states. Contact angle measurements indicated that the layer modified the ZnO surface to become more hydrophobic, resulting in good contact with photoactive films. At the same time, the treatment decr...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.