Abstract

We report on the synthesis of poly(N-isopropyl acrylamide)-block-poly(n-butyl acrylate) (PNIPAm-b-PnBA) amphiphilic block copolymers and their temperature-responsive self-assembly behavior in aqueous solution. Well-defined PNIPAm-b-PnBA copolymers have been synthesized by a two-step RAFT polymerization scheme. The self-assembly behavior was studied by means of static and dynamic light scattering, 1H NMR and fluorescence spectroscopy and transmission electron microscopy. The results show that already below the lower critical solution temperature (LCST) of PNIPAm, association of the PNIPAm blocks with hydrophobic dodecyl end groups of the charge transfer agent leads to the formation of loose aggregates of PNIPAm-b-PnBA micelles, the size and density of which increase with the increasing length of the PNIPAm block. The collapse of the PNIPAm blocks above the LCST leads to the decrease of the aggregates’ size and the increase of their density, but the collapsed PNIPAm chains do not allow for interpenetration of the micellar shells and no further aggregation occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.