Abstract

Microfluidic droplet reactors have many potential uses, from analytical to synthesis. Stable operation requires preferential wetting of the channel surface by the continuous phase which is often not fulfilled by materials commonly used for lab-on-chip devices. Here we show that a silica nanoparticle (SiNP) layer coated onto a Poly(methyl methacrylate) (PMMA) and other thermoplastics surface enhances its wetting properties by creating nanoroughness, and allows simple grafting of hydrocarbon chains through silane chemistry. Using the unusual stability of silica sols at their isoelectric point, a dense SiNP layer is adsorbed onto PMMA and renders the surface superhydrophilic. Subsequently, a self-assembled dodecyltrichlorosilane (DTS) monolayer yields a superhydrophobic surface that allows the repeatable generation of aqueous droplets in a hexadecane continuous phase without surfactant addition. A SiNP-DTS modified chip has been used to monitor bacterial viability with a resazurin assay. The whole process involving sequential reagents injection, and multiplexed droplet fluorescence intensity monitoring is carried out on chip. Metabolic inhibition of the anaerobe Enterococcus faecalis by 30 mg L-1 of NiCl2 was detected in 5 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.