Abstract
The incidence of many diseases is closely related to air pollution. Suspended particulate matter of different sizes represents a major source of environmental pollution. Fine particles, especially ultrafine particles smaller than 2.5 μm, might be more harmful to human health because of their extremely small size, which enables them to penetrate human lungs and bronchi and makes them difficult to filter out. Therefore, the fatal risks associated with PM call for the development of air purification materials with high efficiency and low resistance. In this study, poly(lactic-co-glycolic acid) and polycaprolactone were used to prepare nanofibrous membranes suitable for the efficient capture of particulate matter formed in haze-fog episodes, especially particles smaller than 0.5 μm. The present nanofibrous membranes exhibit superior filtration efficiency for particulate matter, with a much lower pressure drop compared to typical commercial microfiber air filters. Thanks to the combination of small pore size, high porosity, and robust mechanical properties, the poly(lactic-co-glycolic acid)/polycaprolactone (6:4) composite membrane exhibits a high filtration efficiency of 97.81% and a low pressure drop of 181 Pa. These favorable features, combined with the easy availability and biocompatibility of the component materials, highlight the promising potential of the present nanofibrous membranes for the development of personal wearable air purifiers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.