Abstract

Two types of mesoporous silica nanospheres (MSNs) were synthesized for use as controlled-release agents. One was prepared by grafting with 5,6-dihydroxyhexylsilane (DH-MSN) and the other one by further coating with cholic acid-crosslinked poly(lactic acid) (CA-PLA-MSN). We studied the release of the antidepressant venlafaxine from each of the materials in simulated gastric fluid (SGF), in simulated gastric acid solution (SGA), and in simulated intestinal fluid without pancreatin (SIF). The CA-PLA-MSN material was able to significantly delay the release of the drug in intestinal condition compared with gastric acid surrounding due to the fast decomposition rate of PLA in gastric acid. Moreover, it successfully avoided the initial burst to a certain extent in SGF. The enzyme pepsin played a favorable obstruct role in both DH-MSN and CA-PLA-MSN systems to reduce release rate. A model based on Weibull model was built to fit the release results, and based on it, the mechanisms about release processes were brought out tentatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.