Abstract
Biodegradable electronics is a rapidly growing field, and the development of controllably biodegradable, high-conductivity materials suitable for additive manufacturing under ambient conditions remains a challenge. In this report, printable conductive pastes that employ poly(lactic acid) (PLA) as a binder and tungsten as a conductor are demonstrated. These composite conductors can provide enhanced stability in applications where moisture may be present, such as environmental monitoring or agriculture. Post-processing the printed traces using a solvent-aging technique increases their conductivity by up to 2 orders of magnitude, with final conductivities approaching 5000 S/m. Such techniques could prove useful when thermal processes including heating or laser sintering are limited by the temperature constraints of typical biodegradable substrates. Both accelerated oxidative and hydrolytic degradation of the printed composite conductors are examined, and a fully biodegradable capacitive soil moisture sensor is fabricated and tested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.