Abstract

Multiple drug resistance (MDR) seriously reduces the efficacy of many chemotherapeutic agents for cancer. P-Glycoprotein, an efflux pump overexpressed on the cell surface, plays an important role in drug resistance, but several surfactants, such as vitamin E TPGS, can inhibit P-glycoprotein. In this study, a polylactide-surfactant block copolymer poly(l-lactide)-vitamin E TPGS (PLA-TPGS) was synthesized using bidentate sulfonamide zinc ethyl complex as an efficient catalyst, and its self-assembled nanoparticles were used as carriers of doxorubicin. We first found that the activity of P-glycoprotein in drug-resistant breast cancer MCF-7/ADR cells was decreased after incubation with PLA-TPGS nanoparticles. In addition, the nuclear accumulation and cytotoxicity of doxorubicin were significantly increased by encapsulation into the nanoparticles. The enhanced efficacy of the doxorubicin-loaded PLA-TPGS nanoparticles may result from the combination of inhibition of efflux and increased entry of doxorubicin into the nucleus in drug-resistant MCF-7/ADR cells. Therefore, this innovative delivery system has potential to act as a nanomedicine for therapy of both drug-sensitive and drug-resistant cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.