Abstract

The development of membrane-based technologies for the treatment of wastewater streams and resources containing heavy metal ions is in high demand. Among various technologies, nanofiltration (NF) membranes are attractive choices, and the continuous development of novel materials to improve the state-of-the-art NF membranes is highly desired. Here, we report on the synthesis of poly(homopiperazine–amide) thin-film composite (HTFC)-NF membranes, using homopiperazine (HP) as a monomer. The surface charge, hydrophilicity, morphology, cross-linking density, water permeation, solute rejection, and antifouling properties of the fabricated NF membranes were evaluated. The fabricated HTFC NF membranes demonstrated water permeability of 7.0 ± 0.3 L/(m2 h bar) and rejected Na2SO4, MgSO4, and NaCl with rejection values of 97.0 ± 0.6, 97.4 ± 0.5, and 23.3 ± 0.6%, respectively. The membranes exhibit high rejection values of 98.1 ± 0.3 and 96.3 ± 0.4% for Pb2+ and Cd2+ ions, respectively. The fouling experiment with humic acid followed by cross-flow washing of the membranes indicates that a flux recovery ratio (FRR) of 96.9 ± 0.4% can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.