Abstract

Antimicrobial coating of implant material with poly(hexamethylene biguanide) hydrochloride (PHMB) may be an eligible method for preventing implant-associated infections. In the present study, an antibacterial effective amount of PHMB is adsorbed on the surface of titanium alloy after simple chemical pretreatment. Either oxidation with 5% H2 O2 for 24 hr or processing for 2 hr in 5 M NaOH provides the base for the subsequent formation of a relatively stable self-assembled PHMB layer. Compared with an untreated control group, adsorbed PHMB produces no adverse effects on SaOs-2 cells within 48 hr cell culture, but promotes the initial attachment and spreading of the osteoblasts within 15 min. Specimens were inoculated with slime-producing bacteria to simulate a perioperative infection. Adsorbed PHMB reacts bactericidally against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa after surface contact. Adhered SaOs-2 cells differentiate and produce alkaline phosphatase and deposit calcium within 4 days in a mineralization medium on PHMB-coated Ti6Al4V surfaces, which have been precontaminated with S. epidermidis. The presented procedures provide a simple method for generating biocompatibly and antimicrobially effective implant surfaces that may be clinically important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.