Abstract

A biodegradable gene transfer vector has been synthesized by linking several low molecular weight (MW) polyethylenimine (PEI, 1200 Da) blocks using an oligo(L-lactic acid-co-succinic acid) (OLSA, 1000 Da). The resulting copolymer P(EI-co-LSA) (8 kDa) is soluble in water and degrades via base-catalyzed hydrolytic cleavage of amide bonds. With regard to its application as a gene transfer agent, the polymer showed an interesting pH dependency of degradation. At pH 5, when DNases are highly active, the degradation proceeds at a slower rate than at a physiological pH of 7.4. PEI and P(EI-co-LSA) spontaneously formed complexes with plasmid DNA. Whereas the complexes formed with PEI were not stable and aggregated, forming particles of up to 1 microm hydrodynamic diameter, P(EI-co-LSA) formed complexes, which were about 150 nm in size and of narrow size distribution. The latter complexes were stable, due to their high surface charge (zeta-potential + 18 mV). Similar to low MW PEI, the copolymer exhibited a low toxicity profile. At the same time, the copolymer showed a significant enhancement of transfection activity in comparison to the low MW PEI. This makes P(EI-co-LSA) a promising candidate for long-term gene therapy where biocompatibility and biodegradability become increasingly important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call