Abstract

Cellulose based Electroactive paper (EAPap) has been reported as a smart material that can be used as sensors and actuator materials. It has merits in terms of lightweight, biodegradability, large displacement and low actuation voltage. Actuation principle of EAPap is a combination of piezoelectric and ion migration effect. However, the performance of actuator is sensitive to humidity levels, in other words it produces large bending displacement at high humidity levels. Thus, we made an attempt to develop an EAPap which produces large displacement at low humidity level by blending cellulose with small amount of poly (ethylene oxide)-poly (ethylene glycol) [PEO-PEG]. The interaction between cellulose and PEO-PEG is studied by means of SEM and FT-IR. The potential application of PEO-PEG/ cellulose blend film as an actuator working at low humidity level is demonstrated by testing the actuator performance in terms of bending displacement, power consumption with respect to actuation voltage, frequency and humidity level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.