Abstract
Poly(ethylene oxide) (PEO)-based copolymers are at the forefront of advanced membrane materials for selective CO2 separation. In this work, free-standing composite membranes were prepared by blending imidazolium-based ionic liquids (ILs) having different structural characteristics with a PEO-based copolymer previously developed by our group, targeting CO2 permeability improvement and effective CO2/gas separation. The effect of IL loading (30 and 40 wt%), alkyl chain length of the imidazolium cation (ethyl- and hexyl- chain) and the nature of the anion (TFSI-, C(CN)3-) on physicochemical and gas transport properties were studied. Among all composite membranes, PEO-based copolymer with 40 wt% IL3-[HMIM][TFSI] containing the longer alkyl chain of the cation and TFSI- as the anion exhibited the highest CO2 permeability of 46.1 Barrer and ideal CO2/H2 and CO2/CH4 selectivities of 5.6 and 39.0, respectively, at 30 °C. In addition, almost all composite membranes surpassed the upper bound limit for CO2/H2 separation. The above membrane showed the highest water vapor permeability value of 50,000 Barrer under both wet and dry conditions and a corresponding H2O/CO2 ideal selectivity value of 1080; values that are comparable with those reported for other highly water-selective PEO-based polymers. These results suggest the potential application of this membrane in hydrogen purification and dehydration of CO2 gas streams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.