Abstract

Poly(ethylene oxide) (PEO)-based copolymers are at the forefront of advanced membrane materials for selective CO2 separation. In this work, free-standing composite membranes were prepared by blending imidazolium-based ionic liquids (ILs) having different structural characteristics with a PEO-based copolymer previously developed by our group, targeting CO2 permeability improvement and effective CO2/gas separation. The effect of IL loading (30 and 40 wt%), alkyl chain length of the imidazolium cation (ethyl- and hexyl- chain) and the nature of the anion (TFSI-, C(CN)3-) on physicochemical and gas transport properties were studied. Among all composite membranes, PEO-based copolymer with 40 wt% IL3-[HMIM][TFSI] containing the longer alkyl chain of the cation and TFSI- as the anion exhibited the highest CO2 permeability of 46.1 Barrer and ideal CO2/H2 and CO2/CH4 selectivities of 5.6 and 39.0, respectively, at 30 °C. In addition, almost all composite membranes surpassed the upper bound limit for CO2/H2 separation. The above membrane showed the highest water vapor permeability value of 50,000 Barrer under both wet and dry conditions and a corresponding H2O/CO2 ideal selectivity value of 1080; values that are comparable with those reported for other highly water-selective PEO-based polymers. These results suggest the potential application of this membrane in hydrogen purification and dehydration of CO2 gas streams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call