Abstract

Surface modification of doxorubicin (DOX) intercalated zirconium phosphate (ZrP) nanoparticles (DOX@ZrP) is proposed to improve the potential of this drug delivery system for cancer therapy. The surface of DOX@ZrP nanoparticles was modified with an amorphous layer of Zr(IV) followed by modification with monomethyl-poly(ethylene glycol)-monophosphate (m-PEG-PO3) as a feature to increase the DOX@ZrP biocompatibility. 31P{1H}MAS NMR data shows a new peak at −26ppm corresponding to the PO43− groups coordinated with Zr(IV) on the surface. Initial MTS cell viability assay reveals that m-PEG-PO3/Zr(IV)/DOX@ZrP exhibits ∼20% higher cytotoxicity than free DOX and the other ZrP materials when human prostate cancer PC3 cells are exposed for 48h. m-PEG-PO3 polymer coating of DOX@ZrP nanoparticles promise to have a strong impact on the targeting, distribution and degradation of the nanoparticles under physiological environment that should result in a more efficient chemotherapy agent than free doxorubicin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.