Abstract

Novel pH-sensitive hydrogels were developed as suitable candidates for carriers in bioMEMS devices as well as for oral delivery of therapeutic peptides and proteins due to their ability to respond to environmental pH change. Macromonomers containing various PEG molecular weights were synthesized and used to prepare P(MAA-g-EG) hydrogels were by photopolymerization. P(MAA-g-EG) hydrogels showed a drastic change of the equilibrium swelling ratio between pH 2.2 and 7.0. At pH 7.0, hydrogels with PEGMA2000 exhibited higher swelling ratio than hydrogels with PEGMA1000. For both hydrogels with PEGMA1000 and PEGMA2000, the swelling mechanism became more relaxation-controled as the environmental pH changed from 2.2 to 7.0 due to the ionization of the functional groups in polymer networks at high pH. In vitro release studies of insulin were conducted. P(MAA-g-EG) hydrogels exhibited drastic increase of insulin release as the pH of the medium was changed from acidic to basic. Insulin release from P(MAA-g-EG) hydrogels with PEGMA2000 was slower than from hydrogels with PEGMA1000 at both low and high pH. These results were used to design and improve protein release behavior from these carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.