Abstract

A first feasibility study exploring the utility of poly(ethylene carbonate) (PEC) as coating material for drug eluting stents under in vitro conditions is reported. PEC (Mw 242 kDa, Mw/Mn=1.90) was found to be an amorphous polymer with thermoelastic properties. Tensile testing revealed a stress to strain failure of more than 600%. These properties are thought to be advantageous for expanding coated stents. In vitro cytotoxicity tests showed excellent cytocompatibility of PEC. Based on these findings, a new stenting concept was suggested, pre-coating a bare-metal stent with PPX-N as non-biodegradable basis and applying a secondary PEC coating using an airbrush method. After manual expansion, no delamination or destruction of the coating could be observed using scanning electron microscopy.The surface degradation-controlled release mechanism of PEC may provide the basis for “on demand” drug eluting stent coatings, releasing an incorporated drug predominantly at an inflamed implantation site upon direct contact with superoxide-releasing macrophages. As a release model, metal plates of a defined size and area were coated under the same conditions as the stents with PEC containing radiolabelled paclitaxel. An alkaline KO2− solution served as a superoxide source. Within 12 h, 100% of the incorporated paclitaxel was released, while only 20% of the drug was released in non-superoxide releasing control buffer within 3 weeks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.