Abstract

The condensation of saturated steam bubbles in sub-cooled water inside a vertical pipe was studied by poly-disperse CFD simulations. Six test cases with varied pressure, liquid sub-cooling and diameter of the gas injection orifices were simulated. Baseline closures presented for non-drag forces in previous work were found to be reliable also in non-isothermal cases. The effect of bubble coalescence and breakup is over-weighting in the region close to steam injection in case of small orifice diameter. With the increase of orifice diameter, breakup becomes dominant in determining bubble size change. The effect of interphase heat transfer coefficient correlations was investigated. The widespread Ranz–Marshall correlation was found to under-estimate the condensation rate, especially at high pressure levels. In contrast, satisfying agreement with the experimental data was obtained by the Tomiyama correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.