Abstract

Previously observed bioactivity of poly(dimethylsiloxane)-poly(ethylene oxide)-heparin (PDMS-PEO-Hep) triblock copolymers has prompted studies of the surface and bulk character of this copolymer using angular-dependent electron spectroscopy for chemical analysis (ADESCA), static secondary mass spectroscopy (SIMS), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Because the low-energy PDMS phase dominates surfaces of this copolymer when solvent cast under air or vacuum conditions, attempts were made to explain surface restructuring and rearrangements induced in hydrated or aqueous environments that permit surface accessibility and bioactivity of heparin moieties. Based on comparisons with PDMS, PEO, and heparin homopolymers, PEO/heparin blends, and an unheparinized PDMS-PEO diblock copolymer, PDMS-PEO-heparin demonstrates both phase-mixed and phase-separated regions in DSC analysis. During annealing cycles above the Tg values of the copolymer constituents, phase-mixed regions become increasingly phase separated and PEO enriched. TGA analysis confirmed the presence block copolymer constituents and presented evidence of intermolecular segmental interactions, hence phase-mixing in the copolymers. ADESCA analysis indicates that the outer 5 A of both the PDMS-PEO and PDMS-PEO-Hep copolymers is essentially pure PDMS. However, significant amounts of PEO are detected 5 to 20 A below the surface. Static SIMS also detects the presence of PDMS at the surfaces of the PDMS-PEO and PDMS-PEO-Hep copolymers. Compositional models based on ADESCA, SIMS, and DSC data are presented for desiccated and hydrated copolymer surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.