Abstract

This Article describes the design, synthesis, and analysis of a new class of polymer that is capable of depolymerizing continuously, completely, and cleanly from head to tail when a detection unit on the head of the polymer is exposed to a specific applied signal. The backbone of this polymer consists of 1,3-disubstituted pyrroles and carboxy linkages similar to polyurethanes. Diverse side chains or reactive end-groups can be introduced readily, which provides modular design of polymer structure. The designed depolymerization mechanism proceeds through spontaneous release of carbon dioxide and azafulvene in response to a single triggering reaction with the detection unit. These poly(carboxypyrrole)s depolymerize readily in nonpolar environments, and even in the bulk as solid-state plastics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.