Abstract

ABSTRACTScale deposition, which severely damages oil exploration, is a difficulty encountered in oil fields. Scale inhibitors are widely used for controlling scales. Poly(aspartic acid) (PASP) is attracting more and more attention with increasing environmental concern and discharge limitations. However, PASP's poor inhibition in a high‐temperature environment markedly limits its wide use. Thus, poly(aspartic acid)–tryptophan grafted copolymer (PASPTR) was synthesized to improve the inhibition efficiency of PASP. The results show that the reactant of PASPTR has a great effect on its inhibition performance. PASPTR was found to inhibit the precipitation of CaSO4 close to 90% at concentrations as low as 0.4 mg/L at 50°C. The inhibition efficiency of PASPTR against CaCO3 was close to 100% with the concentration of 2 mg/L at 50°C. Scanning electron microscopy and X‐ray diffraction analyses, which showed the morphological and crystal structural changes of CaCO3 and CaSO4 precipitation, verified the excellent inhibition performance of PASPTR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42739.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.