Abstract

The purpose of this study was to determine the influence of a controlled incremental increase in size, molecular weight and number of amine, carboxylate and hydroxyl surface groups in several series of poly(amidoamine) (PAMAM) dendrimers for controlled ocular drug delivery. The duration of residence time was evaluated after solubilization of several series of PAMAM dendrimers (generations 1.5 and 2–3.5 and 4) in buffered phosphate solutions containing 2‰ (w/v) of fluorescein. The New Zealand albino rabbit was used as an in vivo model for qualitative and quantitative assessment of ocular tolerance and retention time after a single application of 25 μl of dendrimer solution to the eye. The same model was also used to determine the prolonged miotic or mydriatic activities of dendrimer solutions, some containing pilocarpine nitrate and some tropicamide, respectively. Residence time was longer for the solutions containing dendrimers with carboxylic and hydroxyl surface groups. No prolongation of remanence time was observed when dendrimer concentration (0.25–2%) increased. The remanence time of PAMAM dendrimer solutions on the cornea showed size and molecular weight dependency. This study allowed novel macromolecular carriers to be designed with prolonged drug residence time for the ophthalmic route.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.