Abstract

We report a novel photodynamic therapy (PDT) drug-carrier system, whereby third-generation (G3) polyamidoamine (PAMAM) was successfully grafted to the surface of porous hollow silica nanoparticles (PHSNPs), followed by the attachment of gluconic acid (GA) for surface charge tuning. The composite G3-PAMAM-grafted PHSNPs (denoted as G3-PHSNPs) with a diameter range of 100–200nm and about 30nm sized shell thickness retain bimodal pore structures (e.g. inner voids and porous structure of the shells) and PAMAM-functionalized outer layer with a large number of amino groups, allowing high loading efficacy of aluminum phthalocyanine tetrasulfonate (AlPcS4) and its effective release to target tissue. The GA-induced G3-PHSNPs were evidenced to be able to favorably cross tumor cell walls and enter into the cell interior. The generation of singlet oxygen (1O2) from AlPcS4-GA-G3-PHSNPs under visible light excitation was detected by the in situ electron spin resonance measurements and the oxidative reaction between the generated 1O2 and a chemical probe. In vitro cellular experiments showed that the photosensitive GA-G3-PHSNPs exhibited a good biocompatibility in the dark and a higher killing efficacy against MCF-7 tumor cells upon irradiation as compared with free AlPcS4, which implies that the preformed photosensitive drug-carrier system might be potentially applicable in PDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.