Abstract

AbstractInsertion of CO2 into the polyacrylate backbone, forming poly(carbonate) analogues, provides an environmentally friendly and biocompatible alternative. The synthesis of five poly(carbonate) analogues of poly(methyl acrylate), poly(ethyl acrylate), and poly(butyl acrylate) is described. The polymers are prepared using the salen cobalt(III) complex catalyzed copolymerization of CO2 and a derivatized oxirane. All the carbonate analogues possess higher glass‐transition temperatures (Tg=32 to −5 °C) than alkyl acrylates (Tg=10 to −50 °C), however, the carbonate analogues (Td≈230 °C) undergo thermal decomposition at lower temperatures than their acrylate counterparts (Td≈380 °C). The poly(alkyl carbonates) exhibit compositional‐dependent adhesivity. The poly(carbonate) analogues degrade into glycerol, alcohol, and CO2 in a time‐ and pH‐dependent manner with the rate of degradation accelerated at higher pH conditions, in contrast to poly(acrylate)s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call