Abstract

We hypothesized that CTL-induced target cell (TC) death is partially due to processes that follow the DNA damage in target cells and include the activation of poly-ADP-ribose transferase (PADPRT) by DNA strand breaks. According to this model, the activated PADPRT is expected to deplete NAD, ATP, and to contribute to the TC death. We used inhibitors of PADPRT and a PADPRT-deficient cell mutant, as well as other nucleated TC and SRBC to test the role of PADPRT in CTL-induced cytotoxicity. It is found that inhibitors of PADPRT (3-aminobenzamide, benzamide (aromatic amides)) and nicotinamide all inhibit the CTL-mediated lysis of both Ag-specific TC and of Ag-nonbearing TC. The effect of PADPRT inhibitors was not due to inhibition of the lethal hit delivery by CTL, because in parallel control experiments, the same inhibitors did not interfere with CTL-induced lysis of SRBC, cells that are devoid of nuclei and PADPRT. Moreover, the effect of inhibitors of PADPRT did not affect earlier stages of lethal hit delivery because 3-aminobenzamide and benzamide did not interfere with CTL-induced DNA fragmentation in TC at concentration which protected TC lysis. Importantly, a PADPRT-deficient cell line was also much more resistant to CTL-induced lysis as tested in retargeting (4 and 8 h) assays; this was expected if activation of PADPRT is indeed involved in TC death. Control experiments reveal that the relative resistance of the PADPRT-deficient cell mutant to CTL-induced lysis was not related to its impaired ability to form conjugates and to trigger CTL (as tested in granule exocytosis assay). In addition, PADPRT-deficient cells were as susceptible to CTL-induced DNA fragmentation as were the control cells; yet, they were resistant to CTL-induced 51Cr-release. Control cells and PADPRT-deficient mutant were equally susceptible to antibody+C'-mediated lysis. Our data support the view that the activation of PADPRT can contribute to the CTL-induced cytolysis of some TC, but is not involved in lysis of other TC, as evidenced by the ability of CTL to efficiently lyse SRBC. These data suggest that there could be multiple molecular pathways of TC death in CTL-mediated cytotoxicity and the relative contribution of PADPRT and/or other enzymes will reflect the individual make-up of a particular TC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.