Abstract

Endothelial cells (EC) are subject to oxidative-induced cell death. Activation of poly(ADP-ribose) polymerase (PARP) occurs early in oxidant-induced EC injury and putatively mediates cell death by depleting its substrate, NAD+. In this study, the role of PARP in H2O2-induced EC death was investigated. EC were exposed to oxidant stress and viability continuously monitored using fluorescent dye exclusion. Inhibition of PARP with 1,5-dihydroxyisoquinoline (DIQ) delayed the time course of oxidant-induced EC death. Concurrent addition of the protein synthesis inhibitor, cycloheximide, or the endonuclease inhibitor, aurintricarboxylic acid, to PARP-inhibited cells further delayed the onset and attenuated the extent of H2O2-induced cell lysis, consistent with an active mode of cell death. Caspase-3-like activity, a hallmark of apoptosis, was negligible in oxidant-treated EC alone, however, inhibition of PARP by 3-aminobenzamide or DIQ dramatically increased caspase-3-like activity. Morphological assessment confirmed that the primary mode of death in oxidant-stressed EC was oncosis. However, following PARP inhibition, the cells switched to apoptosis. Since inflammation is associated with oncosis and not apoptosis, the results presented here could explain the beneficial effects seen with PARP inhibition in various in vivo models of oxidant injury and provide a mechanism to manipulate this injury into a state of cell death that could ultimately be controlled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.