Abstract
Exonuclease 1 (Exo1) has important roles in DNA metabolic transactions that are essential for genome maintenance, telomere regulation and cancer suppression. However, the mechanisms for regulating Exo1 activity in these processes remain incompletely understood. Here, we report that Exo1 activity is regulated by a direct interaction with poly(ADP-ribose) (PAR), a prominent posttranslational modification at the sites of DNA damage. This PAR-binding activity promotes the early recruitment of Exo1 to sites of DNA damage, where it is retained through an interaction with PCNA, which interacts with the C-terminus of Exo1. The effects of both PAR and PCNA on Exo1 damage association are antagonized by the 14-3-3 adaptor proteins, which interact with the central domain of Exo1. Although PAR binding inhibits both the exonuclease activity and the 5′ flap endonuclease activity of purified Exo1, the pharmacological blockade of PAR synthesis does not overtly affect DNA double-strand break end resection in a cell free Xenopus egg extract. Thus, the counteracting effects of PAR on Exo1 recruitment and enzymatic activity may enable appropriate resection of DNA ends while preventing unscheduled or improper processing of DNA breaks in cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.